Sensitive micromechanical displacement detection by scattering evanescent optical waves.
نویسندگان
چکیده
We describe a simple approach to detect small mechanical displacements by scattering evanescent optical waves confined around an optical waveguide. Our experimental setup consists of a microcantilever brought into the proximity of a tapered optical fiber. The scattering of evanescent waves and hence the optical transmission through the tapered fiber is strongly dependent on the separation between the fiber and the microcantilever, allowing for sensitive detection of the small oscillations of the microcantilever. Our approach does not require a coherent laser source, yet it provides a displacement sensitivity of ~260fmHz(-1/2) at a small power level of 38microW. It is suitable for scanning probe microscopy and could eventually be adapted to nanomechanical resonators.
منابع مشابه
Diffraction of evanescent waves and nanomechanical displacement detection.
Sensitive displacement detection has emerged as a significant technological challenge in mechanical resonators with nanometer-scale dimensions. A novel nanomechanical displacement detection scheme based upon the scattering of focused evanescent fields is proposed. The sensitivity of the proposed approach is studied using diffraction theory of evanescent waves. Diffraction theory results are com...
متن کاملMotion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling.
Development of efficient and sensitive motion transducers for arrays of nanoelectromechanical systems (NEMS) is important for fundamental research as well as for technological applications. Here, we report a single-wire nanomechanical transducer interface, which relies upon near-field optomechanical interactions. This multiplexed transducer interface comes in the form of a single-mode fiber tap...
متن کاملSingle-cell detection by cavity ring-down spectroscopy
The implementation of cavity ring-down spectroscopy in an optical fiber resonator extends the viability of this highly sensitive technique for label-free detection of biological species. By chemically treating the surface of discrete tapered sensing regions along the length of a physically extended optical fiber resonator, we show single-cell sensitivity arising from optical scattering of the e...
متن کاملNon-Invasive Determination of Blood Glucose Levels by Optical Waveguide
Objective: Today, there are various non-invasive techniques available for the determination of blood glucose levels. In this study, the level of blood glucose was determined by developing a new device using near-infrared (NIR) wavelength, glass optical waveguide, and the phenomenon of evanescent waves. Materials and Methods: The body's interstitial fluid has made possible the development of ne...
متن کاملSuperresolution of three-dimensional optical imaging by use of evanescent waves.
We simulate a three-dimensional optical diffraction tomography experiment in which superresolution is achieved by illuminating the object with evanescent waves generated by a prism. We show that accounting for multiple scattering between the object and the prism interface is mandatory to obtain superresolved images. Because the Born approximation leads to poor results, we propose a nonlinear in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 35 11 شماره
صفحات -
تاریخ انتشار 2010